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A B S T R A C T

This paper first introduces a binary-block embedding (BBE) method to embed secret data in a binary image.
Using BBE, we propose an algorithm for reversible data hiding in encrypted images (BBE-RDHEI). It uses BBE
to embed binary bits in lower bit-planes of the original image into its higher bit-planes such that the lower bit-
planes can be reserved for hiding secret data in subsequent processes. BBE-RDHEI employs a bit-level
scrambling process after secret data embedding to spread embedded secret data to the entire marked encrypted
image so that it can prevent secret data from loss. A security key design mechanism is proposed to enhance the
security level of BBE-RDHEI. The processes of BBE-RDHEI are fully reversible. The secret data and original
image can be reconstructed independently and separately. Experiments and comparisons show that BBE-
RDHEI has an embedding rate nearly twice larger than the state-of-the-art algorithms, generates the marked
decrypted images with high quality, and is able to withstand the brute-force, differential, noise and data loss
attacks.

1. Introduction

Reversible data hiding (RDH) is a technique that slightly alters
digital media (e.g. images or videos) to embed secret data while the
original digital media can be completely recovered without any error
after the hidden messages have been extracted [1]. It is quite useful for
various applications in military, medical science or law enforcement,
where the original images or videos should not be damaged. A number
of RDH methods were proposed in recent years. Histogram shifting
(HS) shifts several or the maximum points in histogram bins of the
original image to reserve spare space for data embedding [1]. To
improve the embedding capacity, prediction-error based HS algorithms
were introduced [2–4]. Difference expansion (DE) [5–7] as another
type of RDH divides the image into pixel pairs and embeds secret data
into the expanded difference values. Integer transforms have been used
to modify the values of pixel pairs to embed secret data [8–10]. These
RDH methods need the redundancy information of image pixels in
original images to embed secret data, such as the statistic or difference
information of pixel pairs. They are not suitable for encrypted images
that are noise-like and have no redundancy information available.

Recently, reversible data hiding in encrypted images (RDHEI) has
attracted people's attention. It aims to protect both the original images
and secret data simultaneously. For example, the content owner
intends to store an original image in the Cloud that is hosted by a
third party. To prevent the content of the original image from being
exposed to the third party, the content owner encrypts the image before

sending it to the Cloud. Meanwhile, the system administrator of the
third party is able to add some notations to the encrypted image
without knowing its original content. Depending on whether the data
extraction and image recovery processes can be performed separately,
existing RDHEI methods can be classified into joint and separate
methods.

For joint methods, Peuch et al. [11] first encrypted each block of the
original image by the advanced encryption standard (AES) and then
embedded one bit of the secret data into each encrypted block by bit
substitution. The encrypted image embedded with secret data is called
the marked encrypted image. Secret data extraction is just to obtain the
bits in the substituted positions. Original image recovering is accom-
plished by analyzing the local standard deviation of the marked
encrypted image during the decryption procedures. This algorithm
has a limited payload and yields the decrypted image with low quality.
Another joint RDHEI algorithm proposed by Zhang [12] encrypts the
original image using bit-level XOR, and then embeds one bit of secret
data into each block of the encrypted image by shifting the three least
significant bits (LSBs) of half pixels within the block. This algorithm
may suffer from incorrect results of data extraction and image
recovering in the non-smoothness regions in the image when the block
size is relatively small (e.g., 8×8). Hong et al. [13] proposed an
improved version of this algorithm by modifying its smoothness
measurement function. The error rate of data extraction is reduced
for small block sizes. In Wu et al.'s joint method [14], one bit of the
secret data is embedded by flipping the ith ( i1 ≤ ≤ 6) bit of pixels in a

http://dx.doi.org/10.1016/j.sigpro.2016.10.017
Received 13 May 2016; Received in revised form 6 September 2016; Accepted 12 October 2016

⁎ Corresponding author.
E-mail address: yicongzhou@umac.mo (Y. Zhou).

Signal Processing 133 (2017) 40–51

Available online 25 October 2016
0165-1684/ © 2016 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/01651684
http://www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2016.10.017
http://dx.doi.org/10.1016/j.sigpro.2016.10.017
http://dx.doi.org/10.1016/j.sigpro.2016.10.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2016.10.017&domain=pdf


certain group. This method also may suffer from incorrect results of
data extraction and image recovery.

To allow the receiver with different privileges to obtain different
contents (the secret data, the original image or both) from the marked
encrypted image, researchers devote themselves to develop separable
RDHEI methods. Zhang et al. [15,16] proposed two separable methods
that compress the encrypted image to accommodate secret data. In Wu
et al.'s separable method [14], one bit of the secret data is embedded by
replacing the ith (i ≥ 7 for the later one) bit of pixels in a certain group.
Secret data extraction and image recovering are using the prediction
error. Compared with algorithms in [12,13,15], the methods in [14]
reduce the number of incorrectly extracted secret data bits and improve
the visual quality of the marked decrypted image. Qian [17] proposed a
separable RDHEI algorithm using n-nary histogram modification.
However, it results in Salt & Pepper noise in the marked encrypted
images. Besides, instead of working on the spatial domain, Qian et al.
[18] proposed an RDHEI method to embed secret data in the encrypted
JPEG bitstream. In [19] and [20], homomorphic encryption is utilized
to encrypt the original image. However, image size increases because
the used homomorphic encryption algorithm maps the pixel value into
a larger data range. In above mentioned RDHEI methods, the content
owner does nothing except for image encryption. These methods have a
small payload and/or a high error rate in data extraction and image
recovering.

To overcome these problems, some researchers aim to develop
another type of separable RDHEI method by reserving the spare space
for secret data embedding before image encryption. In Ma's method
[21], it reserves the spare space by embedding some LSBs in a part of
the cover image into the rest part of the cover image with using
simplified RDH method in [22]. The self-embedding of LSBs ensures
the reversibility of image recovering. Zhang et al. [23] selected some
pixels and applied a histogram shifting method to their estimation
error values for accommodating secret data.

Previous RDHEI methods in [12,13,15,14,21] have a limited
embedding rate, and are under the only situation that the images are
for the Cloud storage with no transmission involved and thus no
attacks [18]. Considering the scenario that hospitals at different
locations build a bridge for cooperations, many medical images
embedded with patients' information or treatment history records will
be shared among several working teams, thus medical images will be
transmitted over public channels that they may inevitably experience
some noise and data loss. In this scenario, these RDHEI methods may
suffer from secret data loss when the marked encrypted image is
partially damaged or lost. For example, method in [21] uses a part of
the LSB plane in the encrypted image to accommodate the secret data
when embedding rate is less than 0.2 bpp. If the LSB plane is illegally
removed, all secret data will lose. In the separable method in [14], the
secret data are embedded in the ith most significant bit (MSB) plane, it
will also suffer from complete loss of secret data when this MSB plane
is removed or damaged.

To improve the embedding rate while enhancing security and
robustness, this paper introduces the binary-block embedding (BBE)
method to embed message bits in binary images. Based on BBE, we
further propose a reversible data hiding algorithm in encrypted images
(BBE-RDHEI). It first uses BBE to embed binary bits in several LSB
planes of the original image into its MSB planes. BBE-RDHEI encrypts
the original image and hides the secret data into its LSB planes. A bit-
level scrambling process is then employed after secret data embedding
to ensure that the proposed BBE-RDHEI can resist the noise and data
loss attacks. Using different security keys, the receiver is able to obtain
the secret data, marked decrypted image, decrypted image, or all of
them from the marked encrypted image.

Our main contributions in this work are listed as follows:

(1) We propose a new BBE algorithm for reversible data hiding in the
encryption domain, which is totally different from traditional RDH

methods. BBE can be utilized in different types of images such as
binary, gray-scale, medical and cartoon images.

(2) Based on BBE, we further propose a method of reversible data
hiding in encrypted images, BBE-RDHEI. Compared with existing
state-of-the-art methods, it has significantly improved embedding
capacity and quality of the marked decrypted image. BBE-RDHEI
can also be simplified and utilized for binary images, while existing
RDHEI methods are designed only for gray-scale images.

(3) To significantly enhance the security level of BBE-RDHEI, we also
propose a security key design mechanism such that BBE-RDHEI is
able to resist the differential attack, while existing RDHEI methods
cannot.

(4) To enhance the robustness of RDHEI methods in withstanding
noise and data loss attacks, we introduce a bit-level scrambling
process to BBE-RDHEI after secret data embedding to spread out
embedded secret data over the entire marked encrypted image. As
a result, BBE-RDHEI is able to recover most of secret data even if
one bit-plane (e.g., LSB or MSB) of the marked encrypted image is
completely removed. Moreover, any bit-level scrambling algorithm
can be used in our BBE-RDHEI. This is another security benefit of
BBE-RDHEI.

The rest of this paper is organized as follows: Section 2 will
introduce the BBE algorithm. Section 3 will propose BBE-RDHEI.
Simulation results and comparisons will be provided in Section 5.
Section 6 will provide security and robustness analysis of the proposed
BBE-RDHEI. Section 7 will draw a conclusion.

2. Binary-block embedding

In this section, we propose a binary-block embedding (BBE)
algorithm to embed message bits into a binary image.

2.1. BBE

BBE first divides the binary image into a number of non-over-
lapping blocks, separates them into two groups named good and bad
blocks, respectively. A good block is able to be embedded with
messages while a bad one is not. In message embedding phase, BBE
first labels the first 2 or 3 bits of each block with special bits that
indicate the block types. Then the rest bits of a good block will be
replaced with its structure information and message bits while the rest
bits of a bad block will be kept unchanged. Next, we present the BBE
algorithm in detail.

2.1.1. Block labeling
Assume that a binary image with a size of M N× is able to embed

secret data. We first divide the image into a set of non-overlapping
blocks with a size of s s×1 2, where s s, ≥ 31 2 . For a certain block, we let
n s s= *1 2 be the total number of pixels within the block, and
m n n= min{ , }0 1 be the minimum value of n0 and n1, where n0 and n1
are the numbers of 0 s and 1 s within the block, respectively. According
to a threshold na, we then classify these blocks into five categories as
shown in Table 1, namely: Good-I/II/III/IV block and Bad block,
where a good block is able embed secret data, while a bad one cannot.

Table 1
Block types and block-labeling bits.

Condition Block type Block description Block-labeling bits

m n> a Bad cannot embed data 00
m n= = 00 Good-I all pixels are 1 11
m n= = 01 Good-II all pixels are 0 10

m n1 ≤ ≤ a, n n<0 1 Good-III most of pixels are 1 011
m n1 ≤ ≤ a, n n<1 0 Good-IV most of pixels are 0 010
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In a Good-I (Good-II) block, all pixel values are equal to 1 (0), while in
a Good-III (Good-IV) block, less than or equal to na pixel values are
equal to 1 (0). An illustrative example can also be found in the first line
of Fig. 1.

To embed the secret data, we first need to determine the block type.
As shown in Table 1, Good-I (Good-II) block can be easily distin-
guished by checking the value ofm, wherem is obtained once a block is
given. In order to distinguish Good-III (Good-IV) blocks from Bad
ones, we calculate the threshold na by

n n x x n

x n

= argmax{ − 3 − max{⌈ log ⌉, 1} − ⌈ log ⌉ ≥ 0},

1 ≤ ≤ ⌈0.16* ⌉

a
x

2 2

(1)

If m n≥ a, it is a Bad block; otherwise, it is a Good-III (Good-IV) block.
In Eq. (1), expressions xmax{⌈ log ⌉, 1}2 and x n⌈ log ⌉2 represent the bit
length to store x and these x pixels' locations, respectively. These two
parts are utilized to store the structure information of Good-III and
Good-IV blocks, and they will be discussed in Section 2.1.2. Thus, after
the block is labeled by 3 labeling bits and embedded with the structure
information of x pixels, if there is still larger than or equal to 0 bits left,
the current block is considered as a good block; otherwise, it is a bad
block. Therefore, na is the maximum number of pixels that can be
represented by the block itself with a given block size. It is utilized to
distinguish bad blocks from good ones. Here, x should be less than n,
and the reason why we set x less than or equal to n⌈0.16* ⌉ will be
discussed in Section 2.4.1.

After determining the block type, we label each block by replacing
its first 2 or 3 pixels with the corresponding block-labeling bits as
shown in Table 1. Before labeling blocks, the first 2 or 3 original pixels
of each block are picked up and stored with secret message for the
purpose of image recovery at the receiver side.

2.1.2. Structure information embedding
In BBE, a good block is self-embedded with its original structure

information and may have an additional spare space to accommodate
secret message bits. The first 2 bits of each bad block are extracted and
embedded into good blocks together with secret messages because they
are directly replaced by the block-labeling bits ′00′ after the block
labeling procedure.

For a Good-I (Good-II) block, no additional structure information
needs to be embedded except for two labeling bits. For a Good-III
(Good-IV) block, parameter m and the locations of m pixels need to be

embedded as the structure information. Here, p bits are utilized to
embed parameter m, where p n= max{⌈ log ⌉, 1}a2 . Then, we use
variable length of bits to store the locations of m pixels. We first scan
pixels in a block from top to bottom and left to right to obtain the
location index values z z n{ } (1 ≤ ≤ )i i

m
i=1 of thesem pixels. For the first of

m pixels located at z1, without any additional information, z1 could be
any integer in the range of n[1, ]. Thus, we use n⌈ log ⌉2 bits to store its
location index. For the second pixel located at z2, it could only be in the
range of z n[ + 1, ]1 . Thus, we can use n z⌈ log ( − )⌉2 1 instead of n⌈ log ⌉2
bits to store its location index. Therefore, the actual location informa-
tion of m pixels are stored as the distance t{ }i i

m
=1 between the current

pixel and its previous pixel, where ti is calculated by Eq. (3). For
example, for the second pixel, we store its location information by
converting the decimal value t2 into n z⌈ log ( − )⌉2 1 -bit binary seqence. In
this manner that considers the relative distance between adjacent
pixels, we are able to use less bits to store the locations of m pixels. We
then continue in this process until all m pixels' locations are stored.
Thus, qi bits are required to store the ith pixel's location, and totally
p q( + ∑ )i

m
i=1 bits are needed to store the parameter m and m pixels'

locations.

⎧⎨⎩q
n i

n z i m
=

⌈ log ⌉ for = 1
max{⌈ log ( − )⌉, 1} for 2 ≤ ≤i

i

2

2 −1 (2)

⎧⎨⎩t z i
z z i m

= for = 1
− for 2 ≤ ≤i

i

i i−1 (3)

2.1.3. Message embedding
The BBE payload  consists of two parts:  and  , where  is a

bit sequence containing all of the first 2 original bits in each bad block
and  denotes secret messages. After embedding structure informa-
tion, we replace the rest bits of a good block with cb bits of payload  ,
where cb is the block capacity and calculated by

⎧
⎨⎪
⎩⎪

c
n m
n p q m n=

− 2 for = 0
− 3 − − ∑ for 1 ≤ ≤

− 2 otherwise
b i

m
i a=1

(4)

The detailed procedures of BBE are provided in Algorithm 1.

Algorithm 1. Binary-Block Embedding.

Fig. 1. BBE examples with the block size of 5×5. The first and second rows show the five types of original blocks and their corresponding embedded results. White and gray boxes
represent the pixels with values of 1 and 0, respectively. The green, orange and blue areas are utilized to embed payload, parameter m and the positions of m original pixels in the block.
(a) and (b) are Good-I and Good-II blocks with c = 23b and their embedded results; (c) Good-III block with c = 10b and its embedded result; (d) Good-IV block with c = 7b and its

embedded result; and (e) Bad block with c = −2b and its result after embedding. (For interpretation of the references to color in this figure, the reader is referred to the web version of

this article.).
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Input: Binary image I, block size s s×1 2, payload  .
1: Divide I into non-overlapping blocks Bi j, with a size of s s×1 2.

Calculate parameters na, p and qi using Eqs. (1) and (2).
2: for each block Bi j, do

3: Calculate n0, n1, m and cb according to Eq. (4).
4: if m n> a

5: Set the first two pixels to [0, 0].
6: else if m=0 and n = 00 then
7: Set the first two pixels to [1, 1], replace other pixels by cb bits
of the payload.

8: else if m=0 and n = 01
9: Set the first two pixels to [1, 0], replace other pixels by cb bits
of the payload.

10: else if m n1 ≤ ≤ a then
11: if n n<0 1 then
12: Set the first three pixels to [0, 1, 1].
13: else
14: Set the first three pixels to [0, 1, 0].
15: end if
16: Replace other pixels with the parameter m, locations of m
pixels, and cb bits of the payload.

17: end if
18: end for

Output: Embedded image I .

Fig. 1 illustrates an example of BBE. A binary image is divided into
5 blocks with size of 5×5. The payload  includes the first two pixels of
the bad block in Fig. 1(e) and 61 bits of secret messages. BBE embeds
payload  into all good blocks one by one. For the block in Fig. 1(d), it
is a Good-IV block where most pixels are 0 s. Parameters arem=3, p=2,
q = 51 , q q= = 42 3 , c = 7b . BBE labels the block in Fig. 1(d) by setting its
first three pixels to ′010′ (the white area), embeds m = 3 = (11)2 to the
subsequent two pixels (the orange area), puts the location of three
pixels (white boxes in the original block in Fig. 1(d))
t z= = 9 = (01001)1 1 2, t z z= − = 12 − 9 = 3 = (0011)2 2 1 2 and
t z z= − = 14 − 12 = 2 = (0010)3 3 2 2 to the following 13 pixels (the blue
region). The remaining 7 pixels (the green area) are utilized to embed
payload  . For the bad block in Fig. 1(e), its first two original pixels ′11′
are embedded at the beginning of the green area in Fig. 1(a). BBE
replaces its first two pixels as ′00′ to indicate that it is a bad block, and
keeps its other pixels unchanged.

2.2. Message extraction and image recovering

The message extraction and image recovering includes two phases:
1) payload extraction and good block recovering; 2) bad block
recovering. In Phase 1, the BBE scans the first 3 labeling bits of each
block to determine the block type. For a good block, BBE extracts
parameter m, the locations of m pixels and payload bits from the block,
and then reconstructs the block based on the extracted information.
Otherwise, for a bad block, BBE records the block index. In Phase 2,
BBE recovers the first 2 pixels of each bad block using the extracted
payload and keeps the rest pixels unchanged.

2.2.1. Phase 1
For each image block, we first determine its block type by checking

its first 3 pixels. If it is a bad block, we do nothing except for recording
its block index. If it is a Good-I (Good-II) block, we obtain the payload
bits from the last n( − 2) bits and recover the block by setting all bits to
1 s (0 s for the Good-II block). For a Good-III (Good-IV) block, we first
extract the labeling bits and structure information from its first n c( − )b
pixels, where cb is the block capacity; and then obtain the payload bits
from the rest pixels of the block.

To extract secret data from a Good-III (Good-IV) block, we first
obtain the raster-scanned bit sequence a a a[ , ,…, ]n1 2 from the block, and

calculate parameter m from the specific p bits a a[ ,…, ]p4 3+ . Then, we

calculate the location index distance t{^}i i
m
=1 of m pixels by the following

bits in an orderly way. Here, t̂i is the location index distance between
the ith and i( − 1)th pixels, and it is sequentially extracted from the
subsequent q{ }i i

m
=1 bits, where qi is calculated by Eqs. (5). After

obtaining t̂i, we then calculate the actual locations of m pixels by Eq.
(6). For example, for the first pixel, we obtain its location index z t= ^

1 1
according to the following q n= ⌈ log ⌉1 2 bits. For the second pixel,

because its location can only in the range of t n[^ + 1, ]1 , the maximum
possible bits to store its location index should be q n t= ⌈ log ( − ^)⌉2 2 1 .

Thus, we obtain the distance t̂2 between the first and second pixels from
the subsequent q2 bits and calculate the actual location  z t t= + ^

2 1 2 of
the second pixel. We continue in this manner until all structure
information of m pixels are successfully obtained.




⎧⎨⎩q
n i

n z i m
=

⌈ log ⌉ for = 1
max{⌈ log ( − )⌉, 1} for2 ≤ ≤i

j

2

2 (5)


⎪

⎪

⎧
⎨
⎩

z t i
t t i m

=
^ for = 1
^ + ^ for 2 ≤ ≤

i
i

i i−1 (6)

Finally, we extract the payload bits from the rest cb pixels of the
block and set all pixels to 1 s (0 s for the Good-IV block) except for the
m pixels with the index values z{ }i i

m
=1, where cb is calculated by

 
⎧
⎨⎪
⎩⎪

c
n m
n p q m n=

− 2 for = 0
− 3 − − ∑ for 1 ≤ ≤

− 2 otherwise
b i

m
i a=1

(7)

2.2.2. Phase 2
After obtaining the extracted payload and bad block indices, we

recover the first two pixels of each bad block using two bits of the
payload. Thus, the remaining payload bits are extracted messages.

The procedures of message extraction and image recovering of BBE
are given in Algorithm 2.

Algorithm 2. Message extraction and image recovering.

Input: Image I with messages, block size s s×1 2.
1: Initialization:  = [ ], bad block index b = [ ].
2: Divide I into non-overlapping blocks Bi j, with a size of s s×1 2.

Calculate parameters n and p.

3: for each block Bi j, do

4: Scan Bi j, to obtain the pixel sequence a a a a[ , , ,…, ]n1 2 3 .

5: if a a[ , ] = [1, 1]1 2 then

6:   a a a← [ , [ , ,…, ]]n3 4 . B ←i j, Set all pixels to 1.

7: else if a a[ , ] = [1, 0]1 2 then

8:   a a a← [ , [ , ,…, ]]n3 4 . B ←i j, Set all pixels to 0.

9: else if a a[ , ] = [0, 1]1 2 then
10: Calculate m, obtain the m pixels' location zi using Eq. (6).
11:   a a← [ , [ ,…, ]]p q n4+ +∑i

m
i=1

.

12: if a = 13 then

13: B ←i j, Set all pixels to 1 except for the m pixels with location

zi.
14: else

15: B ←i j, Set all pixels to 0 except for the m pixels with location

zi.
16: end if
17: else
18: b b i j← [ ; ( , )]. % record the bad block index
19: end if
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20: end for
21: Extract  and  from  .

22: for each bad block Bi j, where i j b( , ) ∈ do

23: Replace the first 2 pixels of Bi j, by 2 bits of  .

24: end for
Output: Recovered image I, message  .

2.3. Simulation results

BBE introduces noise to uniform regions, changes the uniform
regions, and keeps only the edges. These operations yield an image with
more noise. Fig. 2 shows the embedding results of four 512×512 binary
images using the BBE algorithm with the block size of 4×4. As we can
obverse, the more all-white or all-black blocks the original image
contains, the higher embedding rate BBE can achieve. Meanwhile, the
embedded images become more noise-like.

2.4. Discussions

Here, we discuss the threshold na, embedding rate and advantages
of BBE.

2.4.1. Threshold na
As shown in Eq. (1) and Table 1, the block size s s×1 2 will influence

the value of na, which is a threshold to decide the block types. Fig. 3
visually shows the relationship between the threshold na and block
pixel number n. We set s s3 ≤ , ≤ 401 2 , thus, n ∈ [9, 1600]. As can be
seen, na increases with the increase of n. For example, if s s= = 31 2 , we
can obtain the threshold na=1. This means that a 3×3 image block
containing at most one 0 or 1 is considered as a good block, otherwise it
is a bad block. In addition, when block size is 5×5, n n/a reaches the
maximum value of 0.16. Therefore, in Eq. (1), x should be less than or
equal to n⌈0.16* ⌉.

2.4.2. Embedding rate
To analyze the embedding rate, we apply BBE with different block

sizes to 10,000 binary test images that are generated by binarizing the
gray-scale images from BOWSBase1 with the threshold calculated by
Otsu's method [24]. Table 2 lists the average embedding rates of all test

images with different block sizes. Here we set s s=1 2. From the results,
we can observe that, the average embedding rate reaches the maximum
value when the block size is 7×7. When block size is less than 7×7, the
average embedding rate increases with the block size enlarging, and it
decreases when block size is larger than 7×7.

2.4.3. Advantages
The proposed BBE has at least the following advantages. Namely,

BBE is able to

(a) achieve a higher embedding rate when the original image contains

Fig. 2. Embedding results of BBE with a block size s s= = 41 2 . The first and second rows show the original images and their embedded results with an embedding rate (a) 0.7100 bpp,

(b) 0.3536 bpp, (c) 0.6332 bpp and (d) 0.6730 bpp.

Fig. 3. Relationship between threshold na and block pixel number n.

Table 2
Average embedding rate of 10,000 binary images using BBE with different block sizes.

Block size Average embedding Block size Average embedding
s s×1 2 rate (.bpp) s s×1 2 rate (.bpp)

3×3 0.6628 11×11 0.7308
4×4 0.7431 14×14 0.7014
5×5 0.7600 17×17 0.6975
6×6 0.7628 21×21 0.6568
7×7 0.7685 28×28 0.6180
8×8 0.7679 33×33 0.5708
9×9 0.7348 40×40 0.5072

1 The BOWSBase database is located in: http://bows2.ec-lille.fr/.
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more all-white or all-black blocks.
(b) perform data hiding and image quality degradation within one

single step. This is because BBE embeds secret messages by
modifying the pixel values in good blocks while keeping the
randomness of bad blocks.

(c) completely recover the secret messages and original image without
any error.

3. BBE based reversible data hiding in encrypted images

In this section, we propose a BBE based reversible data hiding
algorithm for encrypted images (BBE-RDHEI). The structure of BBE-
RDHEI is shown in Fig. 4. It is composed of three processes:
generation of the encrypted image, generation of the marked encrypted
image, data extraction/image recovery. These processes are accom-
plished by the content owner who provides the original image, the data
hider who has the secret data to be embedded and the receiver,
respectively. The content owner uses the BBE algorithm to embed
binary bits of lower bit-planes of the original image into its higher bit-
planes such that its lower bit-planes can be reserved for hiding secret
data in the subsequent processes. The image is then encrypted using
the image encryption key KI. The data hider encrypts the secret data
using the data encryption key KD, embeds them into the reserved lower
bit-planes in the encrypted image, and scrambles the image using the
sharing encryption key KS to generate the marked encrypted image
which will be transmitted over public channels. These three encryption
keys are randomly generated by users.

3.1. Random sequence generation

Before presenting three processes of BBE-RDHEI in detail, we
discuss the security key design and random sequence generation. Their
framework is shown in Fig. 5.

A secure hash algorithm2 (SHA) is used to generate two random
hash sequences with the inputs of a user-defined security key K and
image/secret data, respectively. Then the two hash sequences are
XORed to generate the inner random sequence K . K is utilized to
initialize a chaotic system to produce the random sequence that will be
used for encrypting the original image and secret data. The random
sequence K is useful for secret data extraction and image recovering.
Thus, it is called the decryption key. The length of security key K is
user-defined and the decryption key K is with the same length of the
output of SHA.

Using the framework in Fig. 5, any change in the image/secret data

or encryption key will result in the totally different decryption key and
random sequence. This enhances the security performance of the
proposed BBE-RDHEI.

3.1.1. Security key design
BBE-RDHEI has three encryption keys, KI, KD and KS. They all are

random bit sequences generated by users. In addition to obtaining the
marked encrypted image, BBE-RDHEI also produces three correspond-
ing decryption keys, KI , KD and KS, for the receiver to extract the secret
data, marked decrypted image, decrypted image, or all of them if he
holds KS along with KD, KI or both, respectively. These decryption keys
are linked with their corresponding encryption keys and contents of
images or secret data as shown in Fig. 5. They are defined by
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where  (.) is an SHA; I, P and E represent the original image, secret
data, and encrypted image, respectively.

Note that users have flexibility to choose any SHA for Eq. (8). In
this paper, we select SHA-13 for simulations. Thus, three decryption
keys and outputs of  (.) have a length of 160 bits. According to Eq. (8)
KI is linked to KI and the original image I; KD is linked to KD and the
secret data P; KS is linked to KS and the encrypted image E. Thus, any
change in the encryption key or the input of  (.) will result in a
completely different decryption key and thus another chaotic sequence.

3.1.2. Chaotic sequence generation
A chaotic sequence is a random sequence that is sensitive to the

parameter and initial value of its chaotic system. Any chaotic system
can be used to generate the chaotic sequence, and we choose the
Logistic-Sine system (LSS) [25] for demonstrations and it is defined by

x yx x y sin πx= ( (1 − )) + (4 − ) ( )/4)mod 1i i i i+1 (9)

where the initial value x0 (x ∈ [0, 1]0 ) and parameter y (y ∈ (0, 4]) are
calculated by Algorithm 3 with a binary hash sequence H. Then, we will
use this initial condition (x y,0 ) in rest of this paper.

Algorithm 3. Generation of initial value and parameter of LSS.

Input: Binary sequence
H h h h h i= [ , ,…, ]( ∈ {0, 1}, 1 ≤ ≤ 160)i1 2 160 .

1: u h← ∑ 2i i
i

1 =1
40 40−

2: u h← ∑ 2i i
i

2 =41
80 80−

3: v h← ∑ 2i i
i

1 =81
120 120−

Fig. 4. The structure of BBE-RDHEI.

Fig. 5. The generation framework of the security key and random sequence.

2 http://en.wikipedia.org/wiki/Secure_Hash_Algorithm.
3 http://tools.ietf.org/html/rfc3174.
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4: v h← ∑ 2i i
i

2 =121
160 160−

5: Initial value x u← /20 1
40

6: Parameter y u← /20 2
40

7: for i=1 to 2 do

8: x x u v x← ( /2 + )mod 1i i i i i−1
40

−1

9: y y u v y← ( /2 + )mod 4i i i i i−1
40

−1
10: end for
11: x x←0 2

12: y y← 4 − 2

Output: Initial conditions x y( , )0 .

In the following subsections, we will discuss three processes of
BBE-RDHEI one by one.

3.2. Generation of the encrypted image

To protect the content of the original image while embedding secret
data, the content owner applies BBE to the original image to reserve the
bit space for data hiding, encrypts the image, and then sends it to the
data hider. Next, we present these steps in detail.

3.2.1. Reserving bit space using BBE
Reserving the bit space is to embed binary bits of LSB planes of the

original image into its MSB planes using BBE in order to reserve these
LSB planes for embedding secret data.

An original image I with a size of M N× and a data range of [0, 255]
is decomposed into 8 bit-planes. Each bit-plane is then divided into a
set of s s×1 2 blocks. For simplicity, we set s s s= =1 2 . We calculate the
capacity of each block using Eq. (4) and add them together to obtain
the capacity of each bit-plane C i(1 ≤ ≤ 8)i , where C1 and C8 are the
MSB and LSB planes of the original image I, respectively. Suppose k
MSB planes are able to embed C bits of the LSBs that are selected from
other k(8 − ) LSB planes. Here C is the image capacity calculated by

⎪

⎧⎨⎩C
k

C=
0 if = 0
∑ otherwisei

k
i=1 (10)

where

⎧
⎨⎪
⎩⎪

k
C

t t C=
0 if ≤ 0

arg max{ ≤ 8 − , = 1,…,8} if > 0
t

C
MN i

1
∑i

t
i=1

(11)

If C=0, the original image is unable to embed secret data.
Otherwise, the algorithm uses BBE to construct and embed the payload
 into k MSB planes of the original image. Here  is composed of bit
sequences  and , where  contains all the first two bits of each bad
block in k MSB planes and  includes C binary bits that are selected
sequentially from LSB planes of the original image. After embedding 
to k MSB planes, C bit positions in LSB planes are reserved for hiding
secret data.

3.2.2. Image encryption
After reserving the bit space using BBE, the content owner encrypts

the resulting image R to obtain the encrypted image E using bit-level
XOR operation by

E i j R i j T i j( , ) = ( , ) ⊕ ( , ) (12)

where (i,j) represent the pixel location. T is an M N× substitution
matrix that is reshaped from a vector  t t t= [ , ,…, ]MN1 2 , where ti
( i MN1 ≤ ≤ ) is calculated by

t x= ⌊ × 2 ⌋ mod 256i i
50 (13)

and xi is generated from Eq. (9), where the initial condition (x0, y) is
generated from Algorithm 3 with KI , where KI is generated by Eq. (8)

using the original image I and image encryption key KI. The output of
LSS randomly changes in the entire data range of [0, 1] as long as the
initial value x0 and parameter y are in the ranges of [0, 1] and (0, 4],
respectively. LSS has good chaotic performance in the whole parameter
ranges as proved in [25]. Thus, any parameter generated from
Algorithm 3 can be selected to initialize LSS.

Finally, the content owner converts the capacity C into a 20-bit
binary sequence and embeds it into LSBs of the first 20 pixels of image
E using bit replacement. This is used to tell the data hider how many
secret bits can be embedded into the encrypted image E. Thus, the
maximum data embedding rate r (.bpp) can be calculated by

r C MN= /( ) (14)

The parameters k and s need to send to receiver together with
decryption key KI for image recovering.

3.3. Generation of the marked encrypted image

After obtaining the encrypted image E, the data hider embeds secret
data into E without knowing the image content, and then scrambles the
image with the sharing key KS to generate the marked encrypted
image.

3.3.1. Data embedding
Because BBE has reserved the bit space in LSB planes for data

hiding, the data hider can embed secret data into LSB planes using bit
replacement with the information provided by LSBs of the first 20
pixels. In order to achieve a higher level of security, the data hider
encrypts the secret data bits P p p p u C= [ , ,…, ](1 ≤ ≤ )u1 2 using the
data encryption key KD and embeds the encrypted secret data

  P p p p= [ , ,…, ]u1 2 into image E.

p x p i u= round ( ) ⊕ (1 ≤ ≤ )i i i (15)

xi is calculated from Eq. (9), the initial condition (x0, y) is calculated
from Algorithm 3 using the data hiding key KD, where KD is generated
by Eq. (8) with the secret data P and data encryption key KD.

The final encrypted image with embedded secret data is denoted by
D. The bit length u of secret data needs to send to receiver as a part of
the data decryption key K u{ , }D for secret data extraction.

3.3.2. Bit-level scrambling
After obtaining the image D embedded with secret data, the data

hider further scrambles D with the sharing key KS to obtain the final
scrambled image with hidden secret data that is called the marked
encrypted image I . Any bit-level scrambling/permutation method can
be used to scramble the image. We combine the permutation method in
[26] with LSS in Eq. (9) for our experiments. The initial condition (x0,
y) is calculated by Algorithm 3 with KS, where KS is generated by Eq.
(8) using the encrypted image E and sharing encryption key KS. The
secret data length u needs to send to receiver as a part of the sharing
decryption key K u{ , }S for secret data extraction and image recovering.

3.4. Data extraction and image recovering

The data extraction and image recovering are two independent
processes for the receiver. Using different security keys, he can either
recover the image, extract secret data, or obtain both.

3.4.1. Data extraction
Using image and sharing decryption keys, the receiver can extract

the secret data without knowing the image content. BBE-RDHEI first
unscrambles the marked encrypted image I using KS to obtain the
unscrambled image D . Then it extracts the encrypted secret data

  P p p p= [ , ,…, ]u1 2 from LSB planes, and decrypts P using KD to obtain
the original secret data P p p p= [ , ,…, ]u1 2 by
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p x p i u= round ( ) ⊕ (1 ≤ ≤ )i i i (16)

where xi is generated by Eq. (9), where the initial condition (x0, y) is
calculated from Algorithm 3 with KD.

3.4.2. Image recovering
If the receiver has the decryption keys KS and KI with the

parameters k, s, and u, he can obtain the original image or the marked
decrypted image that is similar to the original image embedded with
the secret data.

To generate the marked decrypted image, BBE-RDHEI first obtains
the unscrambled image D , decrypts the image by

 R i j D i j T i j( , ) = ( , ) ⊕ ( , ) (17)

except for the secret data bits, where T is the substitution matrix
generated by Eq. (13), where the initial condition (x0, y) is calculated
by Algorithm 3 with KI . Then, BBE-RDHEI extracts LSBs from k MSB
planes using Algorithm 2, and recovers the MSB planes of the marked
decrypted image. If the receiver also holds KD, he can further extract
and decrypt the secret data from the marked decrypted image using Eq.
(16).

To completely recover the original image from the marked de-
crypted image, BBE-RDHEI further replaces the secret data bits using
binary bits extracted from the k MSB planes. Because of the reversi-
bility of BBE, the image can be completely recovered without any error.

4. Discussion

In this section, we discuss the security keys and parameters used in
the proposed BBE-RDHEI, and the advantages of BBE-RDHEI.

4.1. Security keys

There are six security keys used in the proposed BBE-RDHEI,
namely the image encryption and decryption keys, data encryption and
decryption keys, and sharing encryption and decryption keys. Table 3
gives a list of all security keys. At the receiver side, the sharing
decryption key is combined with the data or image decryption key for
data extraction or image recovering, respectively. For example, decryp-
tion keys  K K u{ , , }D S are for data extraction and  K K k s u{ , , , , }I S are
utilized for image recovering. In BBE-RDHEI, we reserve the spare
space by embedding the binary bits in LSB planes of the original image
into its MSB planes, and the encrypted secret data is then embedded
into the reserved LSB planes. The sharing keys and bit-level scrambling
procedure are designed to ensure that these secret data are extremely
difficult to be located and that most of secret data can be recovered
when a part of the LSB or MSB planes of the marked encrypted image
are lost during transmission. This will be verified by experiments in
Section 6.

4.2. Parameters

There are five parameters used in the proposed BBE-RDHEI: the
block size s, number of bitplanes k that are used to embed binary bits in
LSB planes, secret data length u, and the initial condition (x0, y) that is
utilized to initialize the LSS. Generally, s is user-defined. How the value
of s influences the maximum embedding rate will be discussed in

Table 4 in Section 5. Given an original image and block size s, the
number of bitplanes k is fixed and can be calculated by Eq. (11). The
secret data length u is also fixed when the secret data is given. Because
the LSS has good chaotic performance in its whole data ranges of [0, 1]
(for x0) and (0, 4] (for y), the initial condition (x0, y) will randomly
distribute in their corresponding data ranges. This will be also verified
by experiments in Fig. 10 in Section 6.

4.3. Advantages of the proposed algorithm

In summary, the proposed BBE-RDHEI has at least following
advantages.

• Security: Three security keys are being utilized to ensure different
levels of the user's privileges. The receiver is able to extract different
contents (the secret data or cover image) by using different
combinations of security keys. Moreover, the generation scheme of
the security keys ensures that any change in user-defined security
keys or input contents of SHA in Eq. (8) (the original image or secret
data) will result in a totally different output (the marked encrypted
image). This allows BBE-RDHEI to resist the differential attack.

• Reversibility: The secret data and original image can be fully
recovered due to the reversibility of BBE and independence of the
data extraction and image recovering processes.

• Extendability: BBE-RDHEI can be simplified and utilized in
binary images as well (e.g., we can embed a part of data in a binary
image into the rest portion of the binary image to reserve spare
space for secret data embedding.).

5. Simulation results and comparisons

The proposed BBE-RDHEI is implemented in Matlab. All test
images in our experiments have a size of 512×512 and the pixel value
range of [0, 255].

Fig. 6 shows the simulation results of BBE-RDHEI in the standard
gray-scale Lena image with parameter s=8 and the embedding rate
r=1.6834 bpp. As we can obverse, the marked encrypted image is a
noise-like image. It protects both the original image and secret data.
The unauthorized user has extremely difficulty to obtain any useful
information from it. Two decrypted images (Figs. 6(c) and (d)) have no
visual difference although the LSB planes of the image in Fig. 6(c) carry
secret data.

Table 4 lists the average embedding rates of 10,000 images in
BOWSBase4 using BBE-RDHEI under different block sizes. As can be
seen, when the block size s=5, the images have the maximum
embedding rates. When s is larger than 5, the embedding rate
decreases while the block size increases. Even s is as large as 20,
BBE-RDHEI has an average embedding rate of 1.6874 bpp.

To compare the embedding rate, we apply BBE-RDHEI and five
existing RDH methods to several selected images as shown in Fig. 7.
The results are plotted in Fig. 8. In experiments, we set the block size

Table 3
List of security keys.

Encryption keys Notation Decryption keys Notation

Image encryption key {KI, s} Image decryption key {K k s, ,I }
Data encryption key KD Data decryption key {K u,D }
Sharing encryption key KS Sharing decryption key {K u,S }

Table 4
Average embedding rate of 10,000 grayscale images using BBE-RDHEI with different
block sizes.

Block size Average embedding Block size Average embedding
s s× rate r (.bpp) s s× rate r (.bpp)

3×3 1.9379 9×9 2.0490
4×4 2.1748 11×11 2.0116
5×5 2.2034 12×12 1.9466
6×6 2.1752 14×14 1.8867
7 × 7 2.1774 17×17 1.8310
8×8 2.1556 20×20 1.6874

4 The BOWSBase database is located in: http://bows2.ec-lille.fr/.
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5×5 for BBE-RDHEI, and 8×8 for Zhang's [12] and Hong's [13]
methods. Because Zhang's [12] and Hong's [13] methods may not
completely extract the secret data, the pure embedding rates are
calculated by  ρ s s(1 − ( ))/( )1 2 , where  ρ( ) is the binary entropy
function with the error rate ρ. For Zhang's methods in [15], the
embedding rates are under the situation of full image recovery. For
Wu's joint method in [14], we use 4 pixels in a group to embed 1 secret
data bits by flipping the 6th LSB of pixels within the group; and we
choose the results with a high probability of successful data extraction.
For Wu's separate method [14], we embed the secret data by modifying
the MSB of the selected pixel, and we choose the results with full
correctly image recovering. For Ma's method [21], the simplified RDH
method in [22] is utilized for self-embedding. For Zhang's method in
[23], we use 20% pixels for estimation. The results in Fig. 8 show that
methods of reserving the spare space before encryption achieve much
better data hiding performance than those without preprocessing
before encryption. This is because a normal image contains more
redundancy than in a noise-like encrypted image. Our proposed BBE-
RDHEI performs well not only in gray-scale, medical and cartoon
images, and has an embedding rate nearly two times more than these
state-of-the-art RDH methods in most cases.

Fig. 9 compares visual quality of the marked decrypted images
generated by BBE-RDHEI and several existing methods. We select a

nature, medical and cartoon image from Fig. 7 for comparisons;
separately. The results show that BBE-RDHEI has the highest PSNR
scores in the marked decrypted images under different embedding
rates. This is because BBE-RDHEI uses only LSBs for embedding secret
data while existing methods require higher bit-planes for accommodat-
ing secret data.

6. Security and robustness analysis

When a marked encrypted image is transmitted through public
channels, hackers may try to break it to obtain the secret data or/and
original image; meanwhile, the marked encrypted image may inevitably
experience some noise and data loss during transmission. Thus, an
RDHEI algorithm should be able to withstand potential attacks.
Modern steganalysis is to detect the existence of the hidden data in a
meaningful stego image. Once the presence of hidden information is
revealed or even suspected, the purpose of steganography is defeated,
even if the secret data is not extracted or deciphered [27]. Different
from the traditional steganographic methods, the proposed BBE-
RDHEI as well as existing RDHEI methods [12,13,15,16,21] embeds
secret data in an encrypted image (i.e., random-like image) and intends
to protect both the original image and secret data from being illegally
extracted or damaged. Therefore, in this section, we analyze the
security of the proposed BBE-RDHEI in against the brute-force and
differential attacks [28–30]. Moreover, because all public channels are
noise channels, we also analyze the robustness of BBE-RDHEI in
resisting the noise and data loss attacks.

6.1. Security analysis

6.1.1. Brute-force attack
The brute-force attack is a commonly used ciphertext-only attack.

In this attack, the hackers exhaustively search all possible keys until the
correct one is found. As mentioned in Sections 3, three security keys,
KI , KD and KS, are needed to ensure the successful recovering of the
secret data and original image. Obtaining either the original image or
secret data needs at least two security keys. Each key is a length of 160
bits, therefore the possible combinations of the security keys will be
more than 2320. Thus the key space is sufficiently large to resist the
brute-force attack.

On the other hand, because the security keys are to set the initial
condition (x0, y) of LSS for image encryption, a large data range of x0

Fig. 6. Data hiding and extraction using BBE-RDHEI with the block size 8×8 and embedding rate r=1.6834 bpp. (a) The original image. (b) the marked encrypted image; (c) the marked
decrypted image; (d) the decrypted image.

Fig. 7. Test images used in Fig. 8. (a) Lena; (b) Peppers; (c) Boat; (d) Airplane; (e) Breast; (f) Bone; (g) Cartoon1; (h) Cartoon2.

Fig. 8. Comparison of the embedding rate of different methods in several selected
images. (a)-(h) are test images shown in Fig. 7.
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and y will reduce their probability of being predicted and result in high
security. In order to show the distribution of x0 and y, we randomly
generate 5000 160-bit binary sequences, and set them to the input of
Algorithm 3 to generate 5000 pairs of initial condition (x0, y),

separately. Fig. 10 shows the distributions of the initial condition (x0,
y). We can obverse that the values of x0 and y randomly distribute in
the whole data ranges of [0, 1] and (0, 4], respectively. This demon-
strates that it is extremely difficult for the hackers to obtain the correct
initial condition (x0, y) for decryption.

6.1.2. Differential attack
The differential attack is a kind of chosen-plaintext attack in which

the hackers try to break the encrypted information by analyzing the
correlation of changes between the input plaintexts and output
ciphertexts [31]. Differential analysis is under the assumption that
security keys are not changed during attack or analysis. To resist the
differential attack, an algorithm should ensure that a tiny change in the
inputs will result in a significant change in the outputs. For RDHEI,
there are two types of plaintexts (the original image and secret data)
and one ciphertext (the marked encrypted image). Thus, we perform
differential analysis to the original image and secret data, separately.

To evaluate its performance of differential analysis to the original
image, we apply BBE-RDHEI to two original images using the same
secret data and security keys. The results are shown in Fig. 11. The
original image in Fig. 11(b) is generated from the image in Fig. 11(a) by
setting its pixel value 107 in position (455, 288) to 0. As one can

Fig. 9. PSNR comparison of the marked decrypted images generated by different RDHEI methods with different embedding rates. (a) Lena; (b) Breast; (c) Catoon1.

Fig. 10. Distribution of 5000 pairs of x0 and y that are generated from Algorithm 3 with
the input of 5000 randomly generated 160-bit binary sequences, separately.

Fig. 11. Differential analysis of BBE-RDHEI for the original image with block size s=10, embedding rate r=1.6047 bpp. (a) The original image I1; (b) the original image I2, which is
obtained from (a) with one pixel difference; (c) the difference between (a) and (b), I I| − |1 2 ; (d) the marked encrypted image I1 of (a); (e) the marked encrypted image I2 of (b); (f) the

difference between (d) and (e),  I I| − |1 2 .
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observe, even one pixel difference between two original images yields
totally different marked encrypted images. This can be verified by the
image in Fig. 11(f).

To perform differential analysis in secret data, we embed two secret
data into the same original image with the same security keys. Here,
two secret data are the same except for one bit difference. The
simulation results are shown in Fig. 12. As can be seen, even though
the original images are the same, a tiny difference in secret data also
results in totally different marked encrypted images.

Therefore, it is extremely difficult for the hackers to obtain any
information from the correlations of changes between the plaintexts
and ciphertexts. This is because even a tiny difference in the plaintexts
(the original image or secret data) will result in a totally different
marked encrypted image. This proves the effectiveness of BBE-RDHEI
in against to differential attack.

6.2. Robustness analysis

In real applications, image may inevitably experience some noise
and data loss during transmission. Thus, the RDHEI algorithm should

have the ability of resisting noise and data loss attacks.
Fig. 13 shows the performance of BBE-RDHEI in withstanding the

noise and data loss attacks. We choose the gray-scale Lena image and
binary university logo to be the original image and secret data,
respectively. In this experiment, we set the block size 5×5 and
embedding rate r=1 bpp. Fig. 13 shows extracted secret data and
recovered images from the marked encrypted images with various
attacks of adding 1% Salt & Pepper noise, applying a 40×40 data
cutting, removing the LSB and MSB planes, respectively. We can
obverse that, BBE-RDHEI can successfully recover most of the original
image and secret data. This is because BBE-RDHEI uses a bit-level
scrambling to spread out the embedded secret data and important
information of the original image to the entire marked encrypted
image. However, other methods such as the ones in [21] and [14] suffer
from serious secret data or original image content loss when a part of
the LSB or MSB planes is lost during transmission.

7. Conclusion

In this paper, we have proposed a binary block embedding (BBE)

Fig. 12. Differential analysis of BBE-RDHEI for the secret data with block size s=16, embedding rate r=1.2750 bpp. (a) The original image; (b) the marked encrypted image embedded
with message P1; (c) the marked encrypted image embedded with message P2 where P1 and P2 are only with one bit difference; (d) the difference between (b) and (c).

Fig. 13. Noise and data loss attacks. The first row shows the marked encrypted image (a) without noise; (b) with 1% Salt & Pepper noise; (c) with 40×40 image cut; (d) with the LSB
plane removed; and (e) with the MSB plane removed, respectively. The second and third rows show the extracted secret data and recovered images, respectively.
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method for embedding messages in binary images. Based on BBE, we
have proposed a reversible data hiding algorithm in encrypted images
(BBE-RDHEI) in which BBE is utilized for reserving the bit space for
embedding secret data. BBE-RDHEI employs a bit-level scrambling
process after secret data embedding to spread embedded secret data to
the entire marked encrypted image. A security key design mechanism is
proposed to enhance its security level. Both BBE and BBE-RDHEI have
been proved to be reversible. Simulations and comparisons have shown
that BBE-RDHEI outperforms other existing methods in terms of the
embedding rate and PSNR results of the decrypted images. Security
analysis has demonstrated the robustness of BBE-RDHEI in against
different attacks.
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